

Ethylene	136
Monosubstituted	125-126
cis-Disubstituted	117-119
trans-Disubstituted	114-115
Terminally disubstituted	116-117
Trisubstituted	112
Tetrasubstituted	110

Stereochemistry of Alkene Hydrogenation

Two spatial (stereochemical) aspects of alkene hydrogenation:

- syn addition of both H atoms to double bond
- hydrogenation is stereoselective, corresponding to addition to less crowded face of double bond

Mechanism

Electrophilic addition of hydrogen halides to alkenes proceeds by rate-determining formation of a carbocation intermediate.

Electrons flow from the π system of the alkene (electron rich) toward the positively polarized proton of the hydrogen halide.

6-29

Regioselectivity of Hydrogen Halide Addition: Markovnikov's Rule

When an unsymmetrically substituted alkene reacts with a hydrogen halide, the hydrogen adds to the carbon that has the greater number of hydrogen substituents, and the halogen adds to the carbon that has the fewer hydrogen substituents.

6-32

	Acid-ca	atalyzed hydration	ח
ethylene		CH ₂ =CH ₂	1.0
propene		CH ₃ CH=CH ₂	1.6 x 10°
2-methylo	ropene	(CH _a) _a C=CH _a	2.5 x 10 ¹¹

6-62

Le Chatelier's Principle

A system at equilibrium adjusts so to minimize any stress applies to it.

For the hydration-dehydration equilibria, the key stress is water.

Adding water pushes the equilibrium toward more product (alcohol).

Removing water pushes the equilibrium toward more reactant (alkene).

6-65

Le Chatelier's Principle

At constant temperature and pressure a reaction proceeds in a direction which is spontaneous or decreases free energy (G).

The sign of G is always positive, but ΔG can be positive or negative.

 $\Delta G = G_{\text{products}} - G_{\text{reactants}}$

Spontaneous when $\Delta G < 0$

Le Chatelier's Principle

For a reversible reaction:

aA + bB ↔ cC + dD

The relationship between ΔG and ΔG° is:

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{[C]^{c}[D]^{\circ}}{[A]^{a}[B]^{b}}$$

R = 8.314 J/(mol·K) and T is the temperature in K

Le Chatelier's Principle

At equilibrium, $\Delta G = 0$ and the following becomes true:

$$K_{eq} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

Substituting K_{eq} into the previous equation gives:

 ΔG^{o} = - RT lnK_{eq}

Reactions for ΔG° positive are endergonic and for

 ΔG^{o} negative are exergonic.

Synthesis

Two-step reaction sequence called hydroborationoxidation converts alkenes to alcohols with a regiochemistry opposite to Markovnikov's rule.

- hydration of alkenes
- · regioselectivity opposite to Markovnikov's rule
- no rearrangement
- stereospecific syn addition

Hydroboration-oxidation

	Relative Rates	
Bromination		
ethylene	$H_2C=CH_2$	1
propene	CH ₃ CH=CH ₂	61
2-methylpropene	(CH ₃) ₂ C=CH ₂	5400
2,3-dimethyl-2-butene	$(CH_3)_2C=C(CH_3)_2$	920,000
More highly substitu Alkyl groups on the rich."	ited double bonds react double bond make it m	t faster. ore "electron

Mechanism of Halogen Addition to Alkenes: Halonium lons

Mechanism is electrophilic addition

Br₂ is not polar, but it is polarizable

two steps involved

- (1) formation of bromonium ion
- (2) nucleophilic attack on bromonium ion by bromide

6-96

6-95

Relative Rates of Epoxidation			
ethylene	H ₂ C=CH ₂	1	
propene	CH ₃ CH=CH ₂	22	
2-methylpropene	(CH ₃) ₂ C=CH ₂	484	
2-methyl-2-butene	(CH ₃) ₂ C=CHCH ₃	6526	
More highly substitute Alkyl groups on the d "electron rich."	ed double bonds read ouble bond make it n	ot faster nore	

6-128

Prepare 1-bromo-2-methyl-2-propanol from tert-butyl alcohol

$$(CH_3)_2C = CH_2 \xrightarrow[H_2O]{H_2O} (CH_3)_2CCH_2Br$$

Vicinal bromohydrins are prepared by treatment of alkenes with Br_2 in water.

How is the necessary alkene prepared?

6-143

cationic polymerization free-radical polymerization coordination polymerization

Coordination Polymerization

An alternative polymerization technique that employs novel transition metal catalysts.

The Ziegler route to polyethylene is even more important because it occurs at modest temperatures and pressures and produces *high density polyethylene* which has properties superior to the low density material produced by free-radical polymerization.

End of Chapter 6